

BIOENERGY PRODUCTION, WHICH VARIETY TO USE? - VARIETIES IDEOTYPES AND BRAZILIAN EXAMPLES

Dr. Rafael Augusto da Costa Parrella

Sorghum Breeder

October 8 and 9, 2025

4th European Sorghum Congress Budapest

October 8th - 9th 2025

Rafael Parrella

Sorghum Breeder EMBRAPA MILHO E SORGO

Embrapa's Innovation Network

North


- Embrapa Acre
- Embrapa Amapa
- Embrapa Western Amazonia
- Embrapa Eastern Amazonia
- Embrapa Rondonia
- Embrapa Roraima
- Embrapa Fisheries and Aquaculture

Northeast

- Embrapa Mid-North
- Embrapa Tropical Semi-Arid
- Embrapa Coastal Tablelands
- Embrapa Goats
- Embrapa Cassava & Tropical
- Fruits
- Embrapa Cotton
- Embrapa Tropical Agroindustry
- Embrapa Foods and Territories Embrapa Cocais

Center-west

- Embrapa Western Region Agriculture
- Embrapa Rice & Beans
- Embrapa Coffee
- Embrapa Cerrados
- Embrapa Beef Cattle
- Embrapa Vegetables
- Embrapa Pantanal
- Embrapa Agroenergy
- Embrapa Genetic Resources &
- BiotechnologyEmbrapa Tecnological Information

Topics

✓ Bioenergy in Brazil;

✓ Which sorghum variety to use and ideotypes;

- ✓ Sorghum products for bioenergy;
- ✓ Brazilian examples of bioenergy production (Cogeneration and Biogas);

THE EUROPEAN UNION SUPPORTS

CAMPAIGNS THAT PROMOTE HIGH

QUALITY AGRICULTURAL PRODUCTS.

SORGHUM MATERIALS AT EMBRAPA: INNOVATION ASSETS

Silage for animal feed

Sweet sorghum in sugarcane mill (cultivars and production systems)

Biomass sorghum for energy: cogeneration, second generation ethanol and biogas

- ✓ Grain yield
- ✓ Plant height
- ✓ Earliness
- ✓ No tanine
- √ No Lodging

Broom

- √ Size
- **✓ Quality**
- √ Yield
- ✓ Loging
- ✓ Fotoperiod Insensitive

Forage

- √ Green mass
- ✓ Digestibility (NDF, ADF)
- ✓ Protein
- √ High % of grain
- ✓ No Loging
- **✓ BMR**
- √ Fotoperiod insensitivy
- √ Milk production

Bioenergy

- √ Green mass
- ✓ Juice yield
- √ High Sugar
- **√ IPU**
- √ Fiber
- √ Fotoperiod sensitivy

All sorghum

- ✓ Drought tolerance
- ✓ Disease resistance
- ✓ Pests resistance
- ✓ Nematode resistance
- √ No Loging



EMBRAPA'S PRIORITIES FOR ENERGY CROPS Fossil carbon Biogenic Carbon

Energy Transition

Bioenergy in Brazil

2nd Survey of the sugarcane crop (August 2025/2026-Conab);

- ✓ Area: 8.849 million hectares (1.0 ↑)
- √ Sugarcane production: 668,820 thousand tons (1.2 ↑)
- ✓ Sugarcane Ethanol Production: 26.8 billion liters (1.3 ↑)
- ✓ Corn Ethanol Production: 8.9 billion liters (14.5% ↑)
- √ Biogas and Ethanol 2G
- ✓ RenovaBIO

Pellets

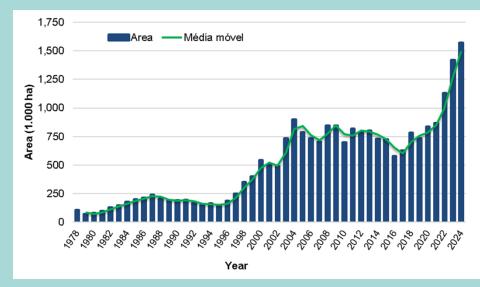
1G and 2G Ethanol

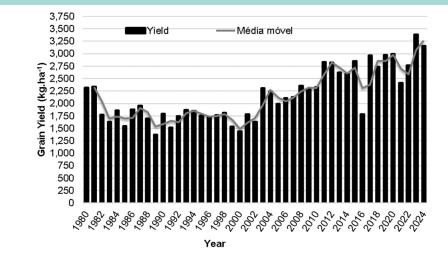
Biogas

Bio-oil

Briquettes

Historical series of grain sorghum in Brazil




2024 season crop

Area = 1.57 million hectares Yield = 3,157 kg ha⁻¹

Production = 4.92 millions of tons

Source: CONAB, 2025.

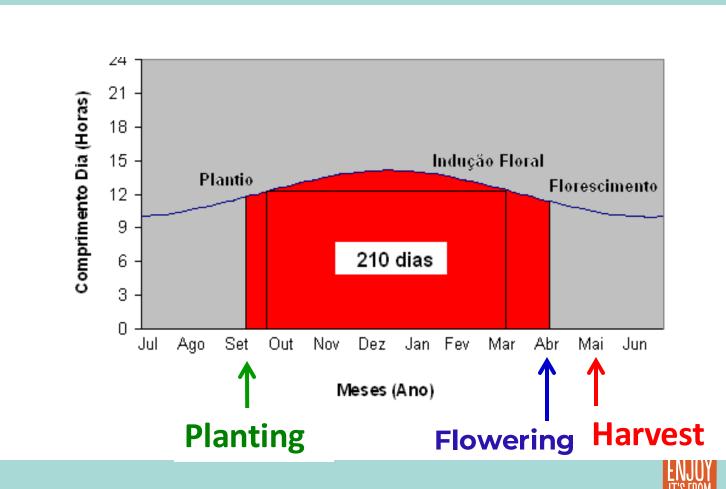
Grain Sorghum for Ethanol Production

1 ton of grain sorghum

410 L of ethanol

330 kg of DDG

THE EUROPEAN UNION SUPPORTS


CAMPAIGNS THAT PROMOTE HIGH QUALITY AGRICULTURAL PRODUCTS.

Sorghum Cycle "Sensitive" to Photoperiod"

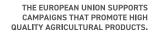
Biomass Sorghum Production

Season/cycle (Days)	Fresh Biomass (t.ha ⁻¹)	Dry Biomass (t.ha ⁻¹)
1ª Season (Cycle 150-170)	80 - 120	24 - 36
2ª Season (Cycle 100-120)	40 - 50	12 - 15

INDUSTRIAL PARAMETERS FOR BIOENERGY SORGHUM

The interaction of:

- ✓ Brix
- **Total Sugars**
- **Fiber**
- ✓ Juice Extraction
- ✓ Sugar Extraction extracted from sorghum stalks during the maturity phase at 7 or 14 day intervals for the varieties Rio and Wray grown in Brazil.


Sample Shredder and Homogenizer

The hydraulic press exerts a pressure of 250 kgf/cm2 on the sample for one minute.

HYDRAULIC PRESS

(CONSECANA, 2015)

FIBER PERCENTAGE IN BIOMASS (WHOLE PLANT) OF DIFFERENTS SORGHUM GENOTYPES

Canatuna	FIBER (%)					
Genotype -	130]	DAP	160 I)AP		
CMSXS5017	12	b	15	f		
CMSXS5029	12	b	14	f		
CMSXS5020	12	b	14	f		
CMSXS5035	13	b	15	f		
CMSXS5037	13	b	16	e		
CMSXS5021	18	a	22	c		
CMSXS5039	22	a	22	c		
CMSXS5041	19	a	25	b		
CMSXS5043	18	a	20	d		
BRS716	21	a	27	a		
Mínimo	11		12			
Máximo	22		27			

Sweet Sorghum

dd – Juice - stem

Biomass Sorghum

DD ou D_- Pithy - dry stem

2024/2025 harvest, in Sete Lagoas, MG

¹ Means followed by the same lowercase letter vertically are equal to each other by the Scott-Knott test (1974) at 5% probability.

Juice extraction (%) from different Sorghum Genotypes

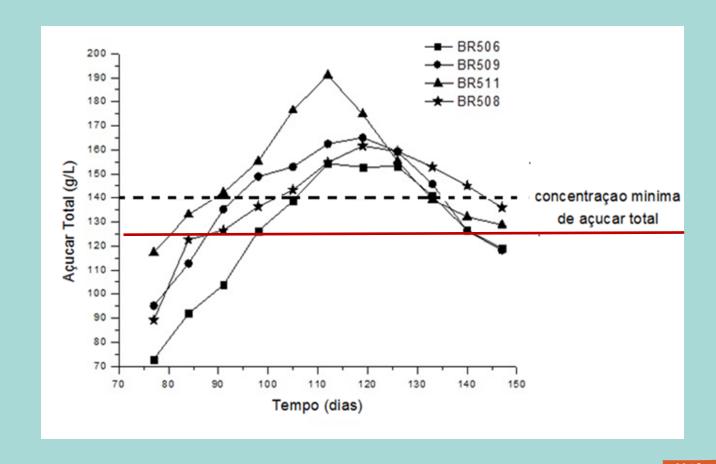
		130DAP					160DAP					
Genotypes	Small	l mi	11	Hydraul	lic p	ress	Small	l mi	11	Hydraul	lic p	ress
CMSXS5017	27.99	a	В	66.67	c	A	19.52	a	В	61.33	b	A
CMSXS5027	24.45	a	В	71.33	a	A	18.66	a	В	69.67	a	A
CMSXS5020	25.78	a	В	69.75	b	A	14.88	a	В	68.53	a	A
CMSXS5035	32.85	a	В	71.67	a	A	20.26	a	В	69.33	a	A
CMSXS5037	25.86	a	В	71.67	a	A	20.06	a	В	69.33	a	A
CMSXS5021	5.66	b	В	60.33	e	A	4.78	b	В	57.67	c	A
CMSXS5039	10.65	b	В	56.33	g	A	8.77	b	В	53.00	d	A
CMSXS5041	13.73	b	В	59.33	f	A	6.37	b	В	51.00	d	A
CMSXS7500	10.15	b	В	57.67	g	A	8.75	b	В	54.67	c	A
BRS716	5.12	b	В	59.33	f	A	5.79	b	В	51.33	d	A

Sweet Sorghum

Biomass Sorghum

DD ou D_- Pithy - dry stem

¹ Means followed by the same lowercase letter vertically are equal to each other by the Scott-Knott test (1974) at 5% probability.


2024/2025 harvest, in Sete Lagoas

Period of Industrial Utilization (PIU)

Minimum Parameters for PIU

Total sugar (% juice): > 12,5%
Extracted sugars (hyd. press):
>80 Kg t⁻¹
Period > 30 dias
(High Sucrose Desirable –
Promotes longer PIU);
Necessary for Industrial
Planning

Period of Industrial Utilization (PIU)

Sugar composition in the extracted juice;

TRS - Total recoverable sugars per ton of sorghum;

Theoretical Ethanol yield

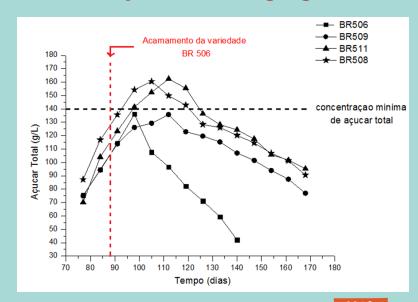
Crop Season 2023/2024

Sete Lagoas-Mg

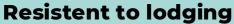
Genótipos	Times	Glucose (mg.mL ⁻¹)	Fructose (mg.mL ⁻¹)	Sucrose (mg.mL ⁻¹)	TSS ° Brix	TRS (mg.mL ⁻¹)	ETY* (L.t ⁻¹)
CMSXS5041	1 - 110 DAP	13,01	11,62	18,88	6,80	44,50	24,51
CMSXS5041	2 - 120 DAP	10,22	8,03	22,26	6,53	41,68	22,96
CMSXS5041	3 - 130 DAP	16,38	12,83	53,81	10,97	85,84	47,28
CMSXS5041	4 - 140 DAP	17,51	11,97	94,25	14,87	128,68	70,88
CMSXS5041	5 - 150 DAP	34,25	33,44	60,65	16,40	131,52	72,44
CMSXS5041	6 - 160 DAP	13,11	8,12	107,58	15,87	134,47	74,06
CMSXS5041	7 - 170 DAP	11,74	8,39	143,65	18,80	171,34	94,37
CMSXS5041	8 - 180 DAP	10,87	7,60	102,51	14,57	126,38	69,61
BRS716	1 - 110 DAP	13,72	11,78	6,89	5,40	32,75	18,04
BRS716	2 - 120 DAP	15,55	12,22	29,99	7,00	59,34	32,68
BRS716	3 - 130 DAP	15,24	12,26	28,10	8,10	57,07	31,43
BRS716	4 - 140 DAP	19,55	17,13	43,35	10,80	82,31	45,33
BRS716	5 - 150 DAP	32,34	31,55	26,67	12,57	91,96	50,65
BRS716	6 - 160 DAP	14,37	10,70	50,90	10,63	78,64	43,31
BRS716	7 - 170 DAP	15,00	10,45	70,78	12,77	99,96	55,06
BRS716	8 - 180 DAP	12,90	8.74	45,66	9.77	69,70	38.39

Challenges: Lodging Resistance

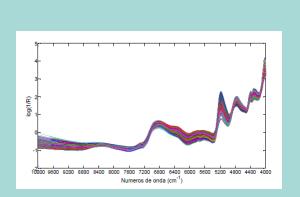
Lodging: Reduces sugar content and increases impurity content



Sorghum


Susceptible to lodging

Fernandes et al., 2014


NIR Analysis for characterization of sorghum genotypes for sugar, cellulose, hemicellulose, lignin and Biogas

Valores de referência - celulose (%)

Microchemical Journal 134 (2017) 125-130

Contents lists available at ScienceDirect

Microchemical Journal

journal homepage: www.elsevier.com/locate/microc

Near infrared spectroscopy determination of sucrose, glucose and fructose in sweet sorghum juice

Maria Lúcia F. Simeone ^{a,*}, Rafael A.C. Parrella ^a, Robert E. Schaffert ^a, Cynthia M.B. Damasceno ^a, Michelle C.B. Leal ^a, Celio Pasquini ^b

a Embrapa Milho e Sorgo, MG 424, km 45, 35701-970 Sete Lagoas, MG, Brazil

b University of Campinas. Chemistry Institute. C. P. 6154, 13083-970 Campinas. SP. Braz

Biomass sorghum for 2G ethanol

Pre-treatment

Saccharification

Fermentation

SORGO BIOMASSA



BRS 716

Primeiro híbrido de sorgo biomassa registrado no Brasil

• Etanol 2G: 211 L/t (produtividade biomassa seca: 30 a 50 t/ha)

SORGO BIOMASSA

Ethanol yields by cellulosic genotype

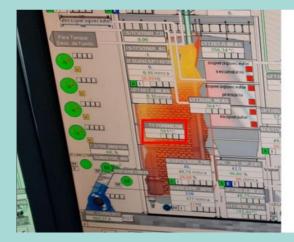
Híbridos		tOH/ FS ác.		OH/ ác.+bs	L EtOH/ ha SSF		
		Couto M.		Couto M.		Couto M.	
	Sete Lagoas	Minas	Sete Lagoas	Minas	Sete Lagoas	Minas	
201556(B)002	3821,21 Aa	4220,28 Aa	11567,86 Aa	9232,21 Bb	9288,38 Aa	8286,97 Bb	
201556(B)003	3715,52 Aa	4196,27 Aa	6612,57 Ab	8080,50 Ab	7767,84 Ab	8511,44 Ab	
CMSXS7027	2806,64 Bb	3577,77 Ab	6671,33 Bb	8459,30 Ab	7423,88 Ab	7369,04 Ac	
CMSXS7016	3788,22 Ba	4520,18 Aa	7256,25 Bb	9316,34 Ab	9323,90 Ba	10330,07 Aa	
BRS716	3976,62 Aa	4401,47 Aa	10587,97 Aa	11838,46 Aa	8166,88 Bb	10820,36 Aa	

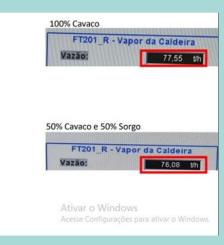
bmr Sorghum: 0.51 L/kg de biomassa Biomass Sorghum: 0.35 L/kg de biomassa

Almeida et al. (2019) Characterization of cell wall polysaccharides and cellulosic ethanol potential in genotypes of sorghum biomass. **International Journal of Development Research**, v. 09, p. 26810-26820, 2019a.

Almeida et al. (2019) Composition and growth of sorghum biomass genotypes for ethanol production. **Biomass & Bioenergy**, v. 122, p. 343-348, 2019b.

Partnership between EMBRAPA and COCAMAR to use biomass sorghums for direct boiler burning





Pictures: Rusti Federle (rusti.Federle@cocamar.com.br)

Implementation of a pilot area of 120 ha with biomass sorghum in the harvest season 2021/2022.

Estimate parameters for steam production (How many kg of sorghum to produce one t of steam?)

Adjustments in Harvest and Logistics

Partnership between EMBRAPA and COCAMAR to use biomass sorghums for direct boiler burning

Glyphosate herbicide was sprayed using drone after sorghum flowering.

Harvesting started 40 days after spraying.

Loading and Transporting Sorghum for Power/Steam Co-generation

Sorghum for power/steam co-generation

Sorghum harvest for energy/steam co-generation

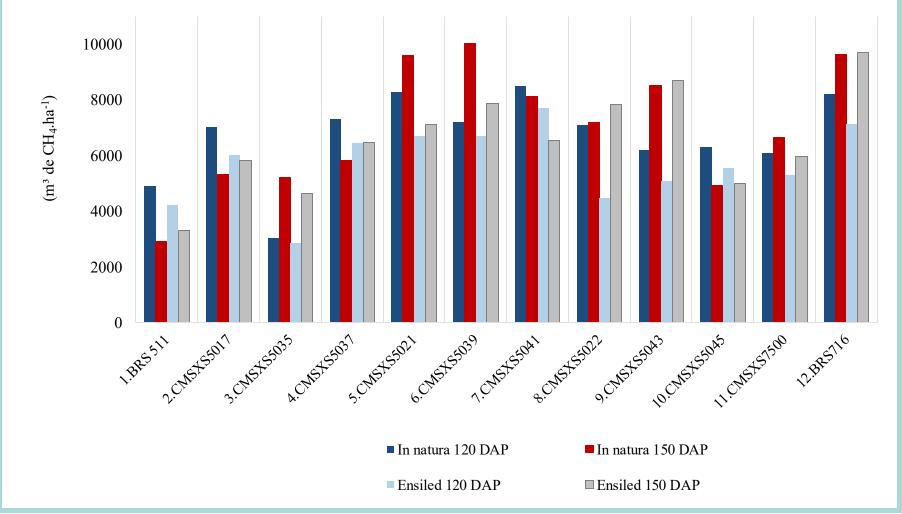
Results of biomass sorghum burning in a high pressure boiler for steam production at Cocamar. July 2022.

Test	Percentage of Sorghum %	Percentage of Chip %	Sorghum Moisture (%)	Chip Moisture (%)	Weighte d Humidity (%)	Produced Steam (ton/day)	Specific Consumption (kg/ton of steam)	Boiler Performance
1	0	100	0	37	37	1000	345	Stable
2	49	51	58	41	49	742.5	372.9	Stable
5	59	41	50	39	46	733.83	385.6	Stable
8	71	29	58	39	52	630.24	416	Stable

Physicochemical and mechanical properties of BRS716 Biomass sorghum pellets

Property	Unit	Value	Property	Unit	Value
Diameter	mm	6.12	Fixed carbon	%	9.0
Length (mean)	mm	14.62	Volatile matter	%	79.6
Length (max)	mm	30.16	Ash	%	4.1
Length (min)	mm	3.53	Moisture	%	7.3
N° de pellets/100g	y unity	224	Higher heating value	J/g	17,66
Apparent density	g.cm ⁻³	0.658	Lower heating value	J/g	15,26
Basic density	g.cm ⁻³	0.775	Energy density	GJ/m ³	10.04
Durability	%	98.37	Carbon	%	41.4
Fines < 3 mm	%	1.63	Hydrogen	%	4.7
Sulfur	%	0.06	Oxygen	%	0.7
Potassium	%	1.2	Chlorine	%	0.3
Nitrogen	%	0.7			

SORGHUM BIOGAS AND METHANE POTENTIAL



BIOCHEMICAL METHANE POTENTIAL FROM SORGHUM

Harvest 2022/2023

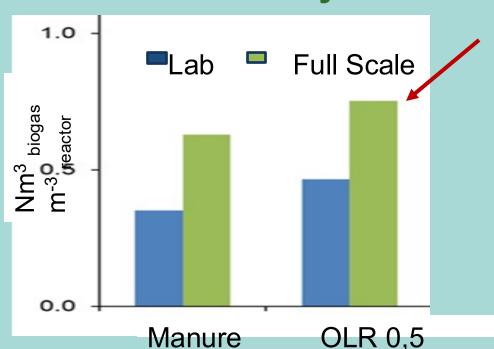
Sorghum BRS 716 as an energy crop for biogas production

Hybrid	DAP	Height	Fresh Biomass	Dry Biomass	ВМР	Production CH ₄	Yield CH ₄
		(m)	(t _{FM} .ha ⁻¹)	(t _{DM} .ha ⁻¹)	(L _N kg _{sv} ⁻¹)	(m ³ t ⁻¹ _{FM})	(m ³ _N .ha ⁻¹)
BRS 716	150	5,1	117,14	39,62	298,35	96,6	11.316

[✓] Sorghum mono-digestion is viable up to an OLR of 2.5 kg $_{vs}$ m⁻³·d⁻¹; however, co-digestion with swine manure stands out as it offers significant advantages for achieving higher OLRs and increased methane production.

LAZAROTO, Ana Claudia. Performance of sorghum BRS 716 as an energy crop for biogas production: monodigestion and co-digestion with pig manure. 2025. 120f. Dissertation (Master's in Biotechnology) - Federal Technological University of Paraná (UTFPR).

Biogas production using co-digestion of sorghum biomass with swine manure



Biogas production using co-digestion of biomass sorghum with swine manure at BIOKOHLER plant, Toledo -PR (BIOGRASS PROJECT (CNPq)

Productivity

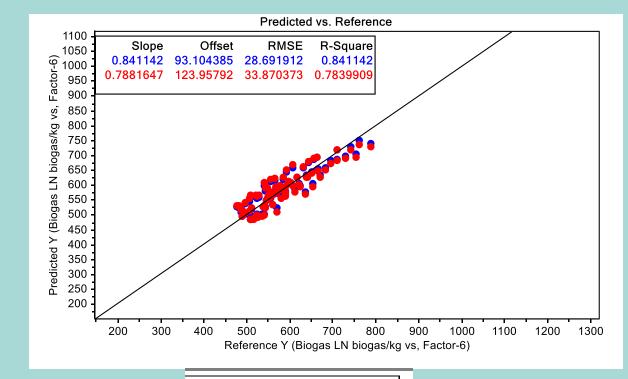
Laboratory vs. Plant Comparison

- 55 days of processing with silage from BRS 716 biomass sorghum.
- Harverst 1: 61 t/ha with 28% of DM

Prodution CH4 = **340** m 3 N/d (55 days)

* Before supplying with sorghum: 284 m³N/d (production with daily supply of swine manure)

The performance of the complete mixing reactor was monitored along with the gradual increase in the volumetric organic load (VOL) de 0,5 g VS L⁻¹ d⁻¹ até 3,0g VS L⁻¹ d⁻¹. * Volatile Solids



Biogas

Methane

82 Elements: 0.841142 Slope: Offset: 93.104385 0.917138 Correlation: R2(Pearson): 0.8411421 R-Square: 0.841142 RMSEC: 28.691912 SEC: 28.868479 Bias: n

Elements: 85 Slope: 0.8766678 39.711506 Offset: Correlation: 0.9363055 R2(Pearson): 0.876668 R-Square: 0.876668 RMSEC: 17.800486 SEC: 17.906126 Bias:

Final Remarks – Take Away

- ✓ Sorghum Has Great Potential to Meet the Requirements for Grain and forage for animal feed, and also for Bioenergy Production;
- ✓ The great productive potential of grain, forage, biomass and sweet sorghum makes them strategic crops in decarbonization, contributing to the reduction of global warming.
- ✓ We have differents Types of sorghum with High Productive and High Quality for differents proposes (Grain, forage, sweet and biomass);
- ✓ We are Interested in Collaborative Research & Development and Business
 Opportunities with Both Public and Private Sectors.

Embrapa Team

Name	Area	E-mail
Airton Kunz,	Industrial Chemist	airton.kunz@embrapa.br
Ana Paula Lazzrotto	Chemical Engineering	analazaroto@alunos.utfpr.edu.br
Deisi Tapparo	Agricultural Engineering	deise deisictapparo@gmail.com
Maria Lúcia Ferreira Simeone	Chemical Analysis	marialucia.simeone@embrapa.br
Rafael Augusto da Costa Parrella	Sorghum breeder	rafael.parrella@embrapa.br
Ricardo Steinmetz	Chemical Engineering	ricardo.steinmetz@embrapa.br
Rubens Augusto da Miranda	Impact assessment and	rubens.miranda@embrapa.br
	economic viability of	
	technologies	

Financial Support

